Quadratic interval refinement for real roots

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Root refinement for real polynomials using quadratic interval refinement

We consider the problem of approximating all real roots of a square-free polynomial f with real coefficients. Given isolating intervals for the real roots and an arbitrary positive integer L, the task is to approximate each root to L bits after the binary point. Abbott has proposed the quadratic interval refinement method (QIR for short), which is a variant of Regula Falsi combining the secant ...

متن کامل

Real Roots of Quadratic Interval Polynomials

The aim of this paper is to study the roots of interval polynomials. The characterization of such roots is given and an algorithm is developed for computing the interval roots of quadratic polynomials with interval coefficients. Mathematics Subject Classification: 65G40

متن کامل

A New Approach for Solving Interval Quadratic Programming Problem

This paper discusses an Interval Quadratic Programming (IQP) problem, where the constraints coefficients and the right-hand sides are represented by interval data. First, the focus is on a common method for solving Interval Linear Programming problem. Then the idea is extended to the IQP problem. Based on this method each IQP problem is reduced to two classical Quadratic Programming (QP) proble...

متن کامل

Weyl Sums for Quadratic Roots

The most powerful methods for handling these sums exploit the modern theory of automorphic forms; see [DFI1] for spectral aspects and [DIT] for more arithmetical connections. The sum (1.1) has only a few terms, bounded by the divisor function, so there is not much room for cancellation, but for applications there is a lot of interest in bounds for sums of these as the modulus c varies, say (1.2...

متن کامل

Consistency and refinement for Interval Markov Chains

Interval Markov Chains (IMC), or Markov Chains with probability intervals in the transition matrix, are the base of a classic specification theory for probabilistic systems (Larsen and J onsson, 1991). The standard semantics of IMCs assigns to a specification the set of all Markov Chains that satisfy its interval constraints. The theory then provides operators for deciding emptiness of conjunct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Communications in Computer Algebra

سال: 2014

ISSN: 1932-2240

DOI: 10.1145/2644288.2644291